





Serial Missed Appointments in the NHS- 'missingness' Andrea E Williamson, Ross McQueenie, David A Ellis, Alex McConnachie & Phil Wilson 11th February 2020





CHIEF

OFFICE

**S**CIENTIST



# Outline

- Aim and context of SMA project
- Patient and practice demographics
- Morbidity and mortality
- Hospital utilisation
- Further work



# **Serial Missed Appointments**

- Proxy for low engagement in care
- As a 'health harming behaviour'
- Is it a proxy for poor health and social vulnerability?
- Importance of the patients' journey through healthcare (whole systems approach)





# **Scottish General Practice**

- (almost all) population coverage
- Universal access & free at point of care
- Unique patient record from birth to death
- Major advances in electronic records recording & retrieval



TARRENT I



# **Definition & analysis**

Average of primary care face to face appointments over previous three years

- Never missed appointments per year, 0
- Low missed appointments per year, <1</li>
- Medium missed appointments per year, 1-2
- High missed appointments per year, 2 or more

Frequency counts Negative Binomial Regression Modelling across 4 appointment groups (Williamson et al BMJ Open 2017)





### **Role of patient turnover**

 No identified difference between the core dataset (patients on GP list for 3 years) and those who entered late or left early





#### **Missed appointments results**

- 136 Scottish representative GP practices550 083 patient records9 177 054 consultations
- 54-0% (297,002) missed no appointments46-0% (212,155) missed one or more appointments
- **19-0%** (104,461) missed more than two appointments
  - (Ellis, McQueenie et al Lancet Public Health 2017)





#### **Patient demographic factors**

- Most socio-economically deprived (SIMD 1) patients most likely to miss appointments (RRR 2.27, 95% CI 2.22–2.31)
- Most remotely located patients <u>least</u> likely to miss appointments (RR 0.37, 0.36–0.38)
- Patients aged 16–30 years (1.21, 1.19–1.23) & older than 90 years (2.20, 2.09–2.29) more likely to miss appointments
- Effect of gender small
- Ethnicity poorly recorded (2.69% all records)



### **GP** practice demographic factors

- Appointment delay 2–3 days (RRR 2·54, 95% CI 2·46–2·62) most strongly associated with non-attendance
- Urban GP practices more strongly associated with missed appointments
- More deprived patients registered with GP practices in more affluent settings have the highest risk of missing appointments



#### **Patient and practice demographics**

 Practice factors have a larger effect than patient factors but a model combining both patient and practice factors gave a higher Cox-Snell pseudo R<sup>2</sup> value (0.66) than models using either group of factors separately (patients only R<sup>2</sup>=0.54;practice only R<sup>2</sup>=0.63)



#### Adverse Childhood Experiences (Williamson et al BJGP Open 2020)





#### Severe and Multiple Disadvantage (unpublished data)

| SMD                                                                    | zero   | low    | medium | high               | Total              |  |
|------------------------------------------------------------------------|--------|--------|--------|--------------------|--------------------|--|
| 0                                                                      | 430014 | 217980 | 88193  | 50358              | 786545             |  |
|                                                                        | 54.7 % | 27.7 % | 11.2 % | <mark>6.4 %</mark> | <mark>100 %</mark> |  |
| 1                                                                      | 9482   | 10235  | 8697   | 8690               | 37104              |  |
|                                                                        | 25.6 % | 27.6 % | 23.4 % | 23.4 %             | 100 %              |  |
| 2                                                                      | 86     | 135    | 168    | 270                | 659                |  |
|                                                                        | 13.1 % | 20.5 % | 25.5 % | 41 %               | 100 %              |  |
| 3                                                                      | <5     | 8      | 13     | 21                 | 43                 |  |
|                                                                        | **     | 18.6 % | 30.2 % | 48.8 %             | 100 %              |  |
| Total                                                                  | 439583 | 228358 | 97071  | 59339              | 824351             |  |
|                                                                        | 53.3 % | 27.7 % | 11.8 % | 7.2 %              | 100 %              |  |
| χ <sup>2</sup> =25889.610 · df=9 · Cramer's V=0.102 · Fisher's p=0.000 |        |        |        |                    |                    |  |



#### Multi-morbidity (Read code categories)

#### (McQueenie et al BMC Medicine, 2019)

| Missed                  | Numk              |                   |                  |        |
|-------------------------|-------------------|-------------------|------------------|--------|
| Appointment<br>Category | None              | One to three      | Four plus        | Total  |
| zero                    | 226190            | 182682            | 30720            | 439592 |
|                         | <mark>51 %</mark> | <mark>42 %</mark> | <mark>7 %</mark> | 100 %  |
| low                     | 84556             | 111928            | 31881            | 228365 |
|                         | <b>37 %</b>       | <mark>49 %</mark> | 14 %             | 100 %  |
| medium                  | 22157             | 51569             | 23351            | 97077  |
|                         | 23 %              | <mark>53 %</mark> | 24 %             | 100 %  |
| high                    | 5819              | 29714             | 23807            | 59340  |
|                         | <mark>10 %</mark> | 50 %              | 40 %             | 100 %  |
|                         |                   |                   |                  |        |



# **Risk of death** Cox regression: adjusted for age, sex, demographics, practice factors and number of long-term conditions (McQueenie et al BMC Medicine, 2019)





#### Causes of death (McQueenie et al BMC Medicine, 2019)

Only mental health-related long-term conditions

| Missed<br>appointment<br>category | Number of deaths<br>(% of group dead) | Mean age at death<br>(SD) | Most common<br>primary causes of<br>death |
|-----------------------------------|---------------------------------------|---------------------------|-------------------------------------------|
| Zero                              | 69 (0.2%)                             | 55.72 (20)                | R99 (11.6), X70<br>(10.1), I219 (8.7)     |
| Low                               | 83 (0.4%)                             | 54.68 (18.79)             | R99 (21.6), X70<br>(12), I219 (6)         |
| Medium                            | 58 (0.6%)                             | 53.1 (20.18)              | R99 (19), X42 (6.9),<br>Y14 (6.9)         |
| High                              | 53 (1.7%)                             | 49.3 (20)                 | R99 (32), G309<br>(9.4), Y14 (5.6)        |



#### Key messages- morbidity and mortality

- Patients with **more long-term conditions** have increased risk of missing GP appointments (controlling for number of apts made)
- Patients missing appointments were at much greater risk of all-cause mortality, the risk increasing with number of missed appointments (independent of morbidities)

(McQueenie et al BMC Medicine, 2019)



#### Key messages – morbidity and mortality

- Patients with long-term mental-health conditions missing >2 appointments per year had >8x risk of all-cause mortality compared with those who missed no appointments
- These patients died at a younger age, and commonly from non-natural external factors
- Missing appointments repeatedly seems to be a powerful marker for greatly increased risk of mortality, particularly among those <u>without</u> physical long-term conditions (after adjustment for all other mortality risks)

(McQueenie et al BMC Medicine, 2019)



# **Hospital utilization**

- Patients missing high numbers of GP appointments were higher users of hospital outpatient (RRR 1.46, 95% CI) 1.44-1.47)\*
- and inpatient care (general RRR 1.67, 95% CI 1.65-1.68)\*, compared to patients missing no GP appointments
- Emergency department use was the same across all groups (RRR 1.00, 95% CI 0.99-1.01)\*

\*negative binomial regression modelling controlling for age, sex, SIMD and number of long-term conditions. (Not yet published)



## Hospital care 'missingness'

- Patients who had patterns of high missed GP appointments were more likely (RRR 1.62, 95% Cl 1.60-1.64)\* to miss hospital outpatient appointments
- Analysis of missed outpatient appointments by specialty ongoing- psychiatry stands out
- Patients with high missed GP appointments were more likely (RRR4.56 95%CI 4.31-4.81) to experience an 'irregular discharge' from inpatient care
- No difference for ED 'left before care complete' between GP missed appointment category

\*negative binomial regression modelling controlling for age, sex, SIMD and number of long-term conditions. (Not yet published)



# **Further SMA work**

- What we would like to have done: • diagnosis codes for A&E, OP and admissions • GP OOH, NHS24 and ambulance data
- What we are doing:

Writing papers (education, ADHD, unmet need, preventative health care)Developing an SMA predictive model

- practices target existing SMA patients for care
- Future plans- interventions
  - involving key stakeholders in primary care, hospital care and experts by experience
  - •Continued academic focus, service development and interventions evaluation











# **Acknowledgements**

- Participating GP practices
- Dave Kelly, Albasoft (TTP)
- Ellen Lynch, H&SCAD Scot Gov
- Chief Scientist Office
- DLDS Scot Gov
- EDRIS team Dionysis Vragkos

Further information http://www.gla.ac.uk/serialmissedappointments



@aewilliamsonl @rossMcqueenie @davidaellis